

M2020: Bit Holder Assembly

Modeling Local Nonlinearity in Linear Transient Solution

Navid Ataei

352L Spacecraft Structures and Dynamics August 2017

Outline

- Overview of M2020 ACA
 - Bit removal operation
- Motivation for nonlinear dynamic analysis
- Modeling approach and implementation
- M2020 bit holder nonlinear analysis
 - Procedure
 - Sample response for coring bit holder
- Time step size
- Sensitivity study for modeling fidelity
- Summary

Mars 2020 Project

ACA: Adaptive Caching Assembly

Overview: Bit Holders

Mars 2020 Project

Different bit holders on rotor

Overview: Bit Removal

Motivation

- Limited spindle torque capability:
 - Limited wave spring preload
 - Potential for uplift during random vibe
- Other problems:
 - Nonlinear springs
 - Constant force devices
 - Structure supported by nonlinear shock isolation systems
- The ability to model local nonlinearities often required for transient loads analysis

Modeling Approach

Modeling with NOLINs Instead of a general nonlinear solution:

$$\mathbf{M}\ddot{U}(t) + \mathbf{C}\dot{U}(t) + KU(t) = F(t) + N(t - \Delta t)$$

- Nonlinear force applied at each grid point as an external load
- Nonlinear force approximated based on the difference between current and previous time step input displacement
 - Time marching solution
 - No iteration to update stiffness matrix → linear solver and faster solution
 - Time step must be small enough to avoid large errors/ convergence issues
- Limitation:
 - Nonlinear elastic only no load path dependency, geometric nonlinearity, etc.

Implementation

- Direct implementation (Sol. 109)
 - Nonlinear portion of the force directly applied to the grid points
 - Easier to use
- Indirect implementation (Sol. 112) for larger models
 - Nonlinear force must be applied to extra points (EPOINTS)
 - EPOINTS must be tied to the physical grids using transfer functions

Bit Holder Nonlinear Dynamic Analysis

Objective

- Determine the required wave spring stiffness and preload to secure the bit holder in random vibe environment
- Preload must be small enough:
 - Have sufficient spindle torque margin for unlocking a bit (operation)
 - Avoid overly stressed bearing and other components
- Avoiding a large preload may cause bit holders to experience some uplift during random vibe
 - Properly modeling this uplift potential with acceptable accuracy which can be analyzed in a reasonable time

Modeling Approach

- At each contact surface, the bit exchange tang can be separated from the tang seat if the preload is overcome
 - Developing model with NOLIN elements which allow for uplift of the bit exchange tang

Contact surfaces underneath the bit exchange tang

- Applied through the links and axial rollers to the contact between bit exchange tang and tang seat
 - In FEM, 1/3 of preload is applied to each contact point
- Preload and wave spring stiffness
 - Coring: P=250N, K=17.6N/mm
 - Regolith: P=600N, K=17.6N/mm
 - Abrading: P=250N, K=16.5N/mm

Procedure

PSD Equivalent Time Histories

Contact force – deflection

Uplift Time History

Mars 2020 Project

Time Step Size

Time steps and sampling rates are small enough

Modeling Fidelity

- Breakout coring bit holder model:
 - Decreased mesh size
 - Change of RBEs at contact point
 - Change of contact CBUSH stiffness (K)

Simulation	Contacts Displacement RMS (mm)		
	1	2	3
Original	0.0099	0.0141	0.0168
½ Mesh size	0.0098	0.0125	0.0157
1/4 Mesh size + Solid elements	0.0098	0.0132	0.0149
RBE	0.0099	0.0141	0.0168
K = 1E+5 N/mm	0.0047	0.0069	0.0091
K = 1E+5 N/mm ½ Mesh size	0.0050	0.0063	0.0092

Summary

- NONLINs: directly applying nonlinearity in a linear algorithm
 - Allow a more computationally efficient solution compared to a general purpose nonlinear analysis
 - Limited to problems with few local elastic nonlinearity
 - Require transfer functions and extra points for implementation in modal transient solution
- Successfully used NOLINs for random vibe analysis of M2020 bit holders
 - Results showed acceptable gapping
 - Contact stiffness deemed the most influential parameter
- Analysis results will be validated by experimental test